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Abstract—Online Social Networks (OSNs) have been used as
the means for a variety of applications, like employment system,
e-Commerce and CRM system. In these applications, social
influence acts as a significant role, affecting people’s decision-
making. However, the existing social influence evaluation meth-
ods do not fully consider the social contexts, like the social
relationships and the social trust between participants, and
the preferences of participants, which have significant impact
on social influence evaluation in OSNs. Thus, these existing
methods cannot deliver accurate social influence evaluation
results. In our paper, we propose a Context-Aware Trust-
Oriented Influencers Finding method, called CT-Influence, with
social contexts taken into account. We conduct experiments
onto two real social network datasets, i.e., Epinions and
DBLP. The experimental results illustrate that our CT-Influence
method greatly outperforms the state-of-the-art method SoCap
in terms of effectiveness and efficiency.
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I. INTRODUCTION

A. Background

Online Social Networks (OSNs) are becoming more and
more popular and have been used as the means in a variety
of applications, like employment, CRM and e-Commerce.
In these applications, the social influence of a participant
can affect others’ decision-making [1], [2]. For example, at
Epinions (epinions.com), an OSN based e-commerce plat-
form, a buyer can write a product review to rate the products
and corresponding seller. This review can be viewed by
other buyers and thus can impact their decision making in
purchasing the same products. As indicated in studies of So-
cial Psychology [3], [4], [5] and Computer Science [6], [7],
[8], a person is more likely to accept the recommendations
given by participants with higher social influence (named as
Influencers) in a specific domain. Therefore, it is significant
to accurate evaluate the social influence of participants and
identify those Influencers from social networks

In the literature, many social influence evaluation methods
have been proposed [9], [10], [11], [12], [13], [14], [15],
[16], [17], [18], in which, Independent Cascade (IC) model
[9] is a typical model to find the Top-K nodes who have
the maximal social influence in a network. Subsequently,
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Figure 1. A social network from Epinions

some important works [15], [13] are proposed to improve the
scalability of IC model. In addition, in recent years, the Lo-
cal Influence Maximization method [19] has been proposed
to evaluate the social influence of a specific participant in
OSNs. Furthermore, as some OSNs are becoming a large
real-time generator of social data-streams, some streaming
methods [20], [21] have proposed to evaluate the social
influence of participants in OSNs.

B. The Problem and Motivation

As illustrated in Social Psychology [22], [23], [24], the
social trust between participants (e.g., students trust their
lecturers in a specific research area), the social relationship
between participants (e.g., the relationship between a fa-
ther and his song), and the preference similarity between
participants (e.g., they all like to play basketball) have
significant influence on participants’ decision-making, and
thus impact their social influence. However, these important
social contexts are not fully considered by the existing social
influence evaluation methods. Thus, these methods cannot
deliver accurate social influence evaluation results.

Example 1: Figure 1 depicts a social network from Epin-
ions, which contains five participants (i.e., P1 to P5, they
are all buyers). The trust relationship (represented as arrows
with solid lines) between P1 and P3, P2 and P3, and P4 and
P3 can be established based on the quality of the product
review of P3 . Their social relationship and preferences can
be mined from the their profiles and purchase history [25].
Suppose P1 has closer social relationships, and has more
similar preferences to P3 than that of P2, then P3 can more
likely affect the purchasing behavior of P1 than P2, which



is not identified by the existing social influence evaluation
methods.

The above mentioned problems motivate us to develop
a social influence evaluation method to accurately evaluate
participants’ social influence in OSNs. In this paper, with
considering the above mentioned important social contexts,
we propose a Context-Aware Trust-Oriented Influencers
Finding method, called CT-Influence by adopting iterative
method. Since our method is convergent fast, thus we can
deliver accurate social influence evaluation results with good
efficiency.

C. Contributions

The main contributions of this paper can be summarised
as follows:
• To the best of our knowledge, this is the first work that

fully takes the social contexts into account in social
influence evaluation.

• We propose a novel social influence evaluation method,
CT-Influence, which achieves O(λN2) in computation
cost, where N is the number of nodes in an OSN and
λ is the iterative times in computation.

• We have conducted experiments on two real social
network datasets, i.e., Epinions and DBLP. By com-
paring with the state-of-the-art individual social influ-
ence evaluation method, SoCap [16], our CT-Influence
method greatly outperforms SoCap in effectiveness and
efficiency for social influence evaluation.

II. RELATED WORK

In the literature, existing social influence evaluation ap-
proaches can be categorized into four groups as below.

A. Global Influence Maximization

The global influence maximization is to find a group
of nodes that can impact the maximal number of other
nodes in an OSN. Kempe et al. [9] propose a greedy
algorithm which guarantees (1 − 1/e) approximation ratio.
However, this algorithm has low efficiency in practice and
thus it is not scalable with the network size. In order
to improve the scalability, [13] propose an algorithm that
has a simple turnable parameter, for users to control the
balance between the running time and the influence spread
of the algorithm. Jung et al. [11] propose an algorithm
IRIE that integrates the advantages of influence ranking
(IR) and influence estimation (IE) methods for the global
influence maximization. [14] provide a scalable influence
approximation algorithm, Independent Path Algorithm (IPA),
for IC model. In the model, they study IPA efficiently
approximates influence by considering an independent in-
fluence path as an influence evaluation unit. Moreover, in
order to spend up the evaluation algorithm, [15] develop
the CELF algorithm, which exploits sub-modularity to find
near-optimal influencer selections.

B. Local Influence Maximization

The local influence maximization is to find a group of
nodes that have the maximal impacts on a specified partic-
ipant. Yeung et al. [17] have studied the relations between
trust and product ratings in online consumer review sites.
Moreover, they propose a method to estimate the strengths
of trust relations so as to estimate the true influence among
the trusted participants. In addition, Guo et al. [19] propose a
method to find K nodes that have the maximal impacts on a
specified participant. Furthermore, Iwata et al. [26] propose a
probabilistic model to discover the latent influence between
participants in OSNs. The model is used to find influential
participants and discover relations between participants.

C. Stream Learning of Influence

In recent years, OSN is becoming a large real-time
generator of social data-streams, like Twitter (twitter.com).
The streaming methods of social influence become more
and more popular. Kutzkov et al. [20] propose a streaming
method, called STRIP for computing the influence strength
along each link of an OSN. In addition, Karthik et al. [21]
propose an approach to mine the flow patterns, following
specific flow validity constraints. However, contrasting with
microblogging platforms, the other OSNs cannot provide
sufficient contexts to perform information flow pattern dis-
covery. Thus, the streaming methods cannot be applied for
the social influencer finding in the OSN based e-commerce
platforms.

D. Individual Influence Evaluation Problem

In order to evaluate the social influence of a specific
participant, Subbian et al. [16] propose an approach,
called SoCap, to find influencers in an OSN by using the
social capital values. They model the problem of finding
influencers in an OSN as a value-allocation problem, where
the allocated value represents the individual social capital.
In addition, Franks et al. [18] propose a method to identify
influential agents in open multi-agent systems by adopting
matrix factorization method to measure the influence of
nodes in a network.

Summary: The existing methods do not fully consider the
social contexts, like social relationships and social trust
between participants, and preferences of participants in
OSNs. As indicated in Social Psychology [3], [4], [5] and
Computer Science [6], such social contexts are significant
for social influence evaluation. Therefore, these existing
methods cannot deliver accurate social influence results.

III. PRELIMINARY

A. Contextual Social Network

A Contextual Social Network (CSN) [27], [28], [29] is a
labeled directed graph G = (V,E,LV, LE), where
• V is a set of vertices;
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Figure 2. A contextual social network

• E is a set of edges, and (vi, vj) ∈ E denotes a directed
edge from vertex vi to vertex vj ;

• LV is a function defined on V such that for each vertex
v in V , LV (v) is a set of labels for v. Intuitively, the
vertex labels may for example represent social roles or
social influence in a specific domain;

• LE is a function defined on E such that for each link
(vi, vj) in E, LE(vi, vj) is a set of labels for (vi, vj),
like social relationships, social trust and preferences in
a specific domain.

B. Social Contexts

Let P denote the set of participants, and R denote the
set of social contexts vectors,

−→
R < t, s, p >∈ R (t, s, p ∈

[0, 1]), where
−→
R i,j(t),

−→
R i,j(s) and

−→
R i,j(p) represent social

trust, social relationship and preference similarity between
Pi and Pj respectively. In addition, we use INi to denote the
incoming neighbors of Pi and ONi to denote the outgoing
neighbors of Pi.
• Social Trust (ST): Let t denote the trust value

between two participants.
−→
R i,j(t) = 1 indicates that

Pi completely trusts Pj , and
−→
R i,j(t) = 0 indicates

that Pi completely distrusts Pj .

• Social Relationship (SR): Let s denote the intimacy
of the Social Relationship between two participants.−→
R i,j(s) = 1 indicates that Pi and Pj have intimate
social relationship, and

−→
R i,j(s) = 0 indicates that Pi

have not contacted with Pj .

• Preference Similarity (PS): Let p denote the value
of Preference Similarity between two participants.−→
R i,j(p) = 1 indicates that the preferences of Pi and
Pj are exactly the same, and

−→
R i,j(p) = 0 indicates that

there is nothing in common interest between Pi and Pj .

Although it is difficult to build up comprehensive social
trust, social relationship and preference similarity in all
domains, it is feasible to build them up in some specific
social communities by using data mining techniques [27].
Mining these social contexts’ values is another challenging
problem, which is out of the scope of this paper.

Example 2: Figure 2 depicts a contextual social net-
work, which contains the social contexts as

−→
R 2,3 =<

Algorithm 1 CT-Influence Algorithm
Input: The set of participants P , the set of relation vectors between two participants

R, iterative times λ;
Output: The social influence set of all participants SI;
1: SI ← {rand(1)};
2: NewSI ← ∅;
3: TotalSI, i← 0;
4: /* Iterative evaluate the social influences which are based on old social influences

*/
5: while i < λ do
6: i← i+ 1;
7: TotalSI ← 0;
8: for each Pj in P do
9: if Pj is not isolated node then

10: v ← 0;
11: for each node Pk in the incoming neighbors of Pj do
12: v ← NewSI + SI[k] ∗ (

−→
Rk,j(t) /

13: TTTRk +
−→
Rk,j(r) / TTSRk

14: +
−→
Rk,j(p) / TTPSk) / 3;

15: end for
16: NewSI[j]← v;
17: TotalSI ← TotalSI + v;
18: end if
19: end for
20: /* Reduce the total social influence to 1 */
21: NewSI ← NewSI / TotalSI;
22: Replace SI with NewSI;
23: end while
24: Return SI .

1.0, 0.5, 0.6 >,
−→
R 4,3 =< 0.8, 0.5, 0.2 >,

−→
R 1,3 =<

1.0, 1.0, 0.8 > and
−→
R 3,1 =< 0.1, 0.5, 0.8 >.

IV. CONTEXT-AWARE TRUST-ORIENTED INFLUENCERS
FINDING METHOD

In this section, we propose a Context-Aware Trust-
Oriented Influencers Finding method, called CT-Influence,
by adopting the iterative method to evaluate social influence.
CT-Influence takes the above important social contexts into
consideration, and thus can deliver more accurate social
influence evaluation results, and therefore can find more
reliable Influencers.

A. Algorithm Description

In our CT-Influence method, the social influence of partic-
ipants are constantly computed and replaced until the social
influences achieve convergence by using iterative method.
Next, we introduce the process of iteration and the details
of CT-Influence.

The social influences at iteration time t+ 1 are based on
the social influences delivered at the last iteration time t. In
the process of evaluating new social influences, we consider
the social contexts (ST, SR and PS) between a participant
and his/her neighbors equally. Let SI∗i denote the social
influence of participant Pi, which can be computed by Eqs.
(1) and (2) as below:

SIt+1
i =

∑
Pk∈INi

SItk · ρk,i (1)
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Figure 3. Computing social influence in iterative process

where
∑
Pi∈ONk

ρk,i = 1 and

ρk,i =

−→
Rk,i(t)

3 · TTTRk
+

−→
Rk,i(s)

3 · TTSRk
+

−→
Rk,i(p)

3 · TTPSk
. (2)

TTTRk =
∑
Pj∈ONk

−→
Rk,j(t), TTSRk =∑

Pj∈ONk

−→
Rk,j(s) and

TTPSk =
∑
Pj∈ONk

−→
Rk,j(p). Here, ρk,i reflects the whole

influence probability from Pk to Pi.
Example 3: The social influence of P1 at iteration time

t have been shown in Figure 3. Based on Eqs. (1) and (2),
at iterative time t + 1, the social influence SIt+1

1 = 0.8 ×
(1.0/2.0+0.5/1.0+0.6/0.6)/3+0.7×(0.5/1.0+0.5/2.0+
0.8/0.8)/3+3.6× (0.8/1.6+0.5/2.0+0.2/0.8)/3+2.5×
(1.0/2.0 + 0.9/1.8 + 0.8/0.8)/3 = 3.81 (accurate to two
decimal places).

B. Convergence of the Iteration

We use an error function to prove the convergence of
our CT-Influence method, which process is similar to the
PageRank model [30]. Then we define the total error at
iteration time t to be:

Error(t) =

N∑
i=1

|SIti − SI∗i | (3)

where N is the number of participants.

Theorem 1: CT-Influence is convergent, i.e.,
Error(t) < Error(t− 1).

Proof 1: Since SI∗i is the real solution, according to
eq.(1), it must satisfy following equation exactly:

SI∗i =
∑

Pk∈INi

SI∗k · ρk,i (4)

For a participant Pi, the error at iterative time t is:

SIti − SI∗i =
∑

Pk∈INi

(SIt−1k − SI∗k) · ρk,i (5)

Using the Triangle Inequality, we can obtain the expression
as follows:

|SIti − SI∗i | ≤
∑

Pk∈INi

|SIt−1k − SI∗k | · ρk,i (6)

Next, we sum all the errors of participants to obtain total
error. Notice that

∑
Pi∈ONk

ρk,i = 1:

Error(t) =

N∑
i=1

|SIti − SI∗i |

≤
N∑
i=1

∑
Pk∈INi

|SIt−1k − SI∗k | · ρk,i

=
∑
−→
Rk,i∈R

|SIt−1k − SI∗k | · ρk,i

=

N∑
k=1

|SIt−1k − SI(Pk)∗| ·
∑

Pi∈ONk

ρk,i

= Error(t− 1)

(7)

Recalling the eq.(6), we find that Error(t) = Error(t− 1)
if and only if ∀ Pk ∈ P, SIt−1k − SI∗k > 0 or ∀ Pk ∈
P, SIt−1k −SI∗k < 0. But, our iterative method reduces the
total social influence to 1, which means that

∑N
k=1 SI

t−1
k =∑N

k=1 SI
∗
k = 1. It can not satisfy the above condition, so

Error(t) < Error(t− 1). Then Theorem 1 is proved. �
The pseudo-code of the algorithm is given in Algorithm

1. The time complexity of our CT-Influence method is
O(λN2), where N is the number of participants in an OSN
and λ is iterative times.

V. EXPERIMENTS

In our experiments, we compare our proposed CT-
Influence method with the state-of-the-art method, SoCap
[16] in the accuracy of the two methods in social influence
evaluation in Exp-1 and Exp-2. In order to investigate the
efficiency of our method, we compare the execution time of
the two methods in Exp-3.

A. Experimental Setting

Table I
EXPERIMENTAL DATASETS

Dataset Epinions DBLP
Nodes 75,879 317,080
Links 508,837 1,049,866

Average Indegree 6.706 3.311
High Indegree Nodes (Indegree ≥ 50) 2032 170

The Ratio of High Indegree Nodes 2.679 % 0.054 %

1) Datasets: We adopt two real social network datasets,
Epinions [31] and DBLP [32]. The Epinions dataset has
75,879 nodes and 508,837 links, where each node represents
a buyer, and each link corresponds to the relationships
between buyers. The DBLP dataset has 317,080 nodes and
1,049,866 links, where each node represents an author, and
each link corresponds to the co-author relationships between
authors. The details of the two datasets are listed in Table I.



2) Ground Truth: As indicated in Social Psychology
[33], if a participant can influence the maximal number of
participants who have a high social influence, then such
a participant has high social influence as well. Therefore,
we rank the influencers based on the number of influenced
participants as the Ground Truth in Exp-1.

3) Diffusion Models: In Exp-2, we adopt two classical
diffusion models, i.e., Linear Threshold (LT) model [34]
and Independent Cascade (IC) model [9]. These models
have been widely used to investigate the effectiveness of
social influence evaluation methods in [35], [36], [37] by
comparing the number of nodes that are influenced by the
seeds in these diffusion models.
• Linear Threshold (LT) Model: LT model is the first

model to imitate the diffusion process of information.
The approach is based on the node-specific thresholds
[34]. In the model, at time step t, all nodes that
were influenced in step t− 1 remain being influenced.
A participant Pi is influenced based on a monotonic
function of its influenced neighbors f(In(i, t)) ∈ [0, 1]
(see Eq.(8)) and a threshold θi ∈ [0, 1], i.e., Pi is
influenced at time t if f(In(i, t)) ≥ θi.

f(In(i, t)) =
∑

Pj∈In(i,t)

bi,j (8)

where In(i, t) is the influenced neighbors of Pi at time
step t. Here, we set

bi,j =

−→
R i,j(t) +

−→
R i,j(s) +

−→
R i,j(p)∑

Pk∈Oni
(
−→
R i,k(t) +

−→
R i,k(s) +

−→
R i,k(p))

, (9)

Oni is the outgoing neighbors of Pi and∑
Pj∈Oni

bi,j ≤ 1. In our experiments, in order
to investigate the effectiveness of our method
based on different thresholds, for each Pi, we set
θi ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.

• Independent Cascade (IC) Model: IC model is a
dynamic cascade model for the diffusion process. The
model is based on the interacting particle system from
probability theory [9]. At each time step t, each partic-
ipant is either influenced or susceptible. A participant
Pj that was influenced at time step t − 1 has a single
chance to influence each of its incoming neighbors
Pi. The influence succeeds with probability pi,j (see
Eq.(10)). Therefore, for participant Pi, if at least one
of its influenced outgoing neighbors succeeds, Pi gets
influenced. The probability of participant Pi getting
influence at time step t is:

f(i, t) = 1−
∏

Pj∈In(i,t−1)

(1− pi,j) (10)

where In(i, t−1) is the influenced incoming neighbors
of Pi at time step t−1. Here, we set pi,j = (

−→
R i,j(t)+−→

R i,j(s) +
−→
R i,j(p))/3.
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Figure 5. Top 1000 influencers delivered by each method on Epinions. The
large circle is the boundary which contains the Top-1000 influencers (small
red circles and blue stars) delivered by each method. Small red circles are
both Ground Truth Top-1000 influencers and Top-1000 influencers delivered
by each method respectively. Blue stars are Top-1000 influencers delivered
by each method rather than Ground Truth Top-1000 influencers. The more
close to the center of the large circle, the higher influence ranking the
influencers have.

In our experiments, we select the Top-K influencers de-
livered by our CT-Influence and SoCap to act as seeds
in the different diffusion models respectively, here, K ∈
{1, 5, 10, 20, 50, 100}. Based on the properties of the dif-
fusion models, the number of nodes that are influenced by
the seeds delivered by the diffusion models can illustrate
the influence of the Top-K influencers [35], [36]. The more
the number is, the higher the effectiveness of corresponding
method is.

4) Experimental Environments: All experiments were run
on a PC powered by two Intel Core i5-3470 CPU 3.20
GHz processors with 8 GB of memory, using Windows 7
Professional. The code was implemented by using Visual
C++ 2012 and the experimental data was managed by
MySQL Server 5.6. All the experimental results are averaged
based on five independent runs.

Table II
THE PERFORMANCES OF CT-Influence AND SoCap WITH Ground Truth

Top-1000

Method DataSet Retrieved Number Precision Average Execution Time
CT-Influence Epinions 840 0.84 444 ms

SoCap Epinions 247 0.247 6436 ms
CT-Influence DBLP 138 0.138 1244 ms

SoCap DBLP 44 0.044 8364 ms

B. Experimental Results and Analyses



Table III
THE COMPARISON OF CT-Influence AND SoCap WITH Ground Truth

Top-10 ON Epinions

Nodes’ ID Ground Truth Ranking CT-Influence Ranking SoCap Ranking
18 1 1 108
737 2 2 269
401 3 3 308
40 4 4 631
118 5 6 669
34 6 7 1184 (missing)
550 7 8 6226 (missing)
136 8 12 6442 (missing)
143 9 23 6448 (missing)

1719 10 32 23842 (missing)
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Figure 6. Top 1000 influencers of delivered by each method on DBLP. X
axis and Y axis are all ranking of social influence, and the large circle is the
boundary which contains the Top-1000 influencers (small red circles and
blue stars) delivered by each method. Small red circles are both Ground
Truth Top-1000 influencers and Top-1000 influencers delivered by each
method respectively. Blue stars are Top-1000 influencers delivered by each
method rather than Ground Truth Top-1000 influencers. The closer to the
center of the large circle, the higher influence ranking the influencers have.

1) Exp-1. Effectiveness (by Ground Truth): We measured
the precision by varying the Top-1000 influencers retrieved
by each method against the Ground Truth Top-1000 influ-
encers.

• Firstly, we observe the trend of Retrieved Number with
the increasing of times of iteration to investigate the
convergence of our CT-Influence method. Here, Re-
trieved Number is the number of retrieved influencers,
which are both the Ground Truth Top-1000 influencers
and the Top-1000 influencers delivered by our CT-
Influence method. The experimental results delivered
based on Epinions dataset and DBLP datasetare are
shown in Figure 4, where we can see that the Retrieved
Numbers of our CT-Influence method keep stable after
5 times of iterations for both datasets. Then, in the
following experiments, we set the Iterative times λ as
5.

• Secondly, after five iterations, the experimental results
are listed in Table II. For Epinions, our CT-Influence
method finds 840 out of the Ground Truth Top-1000
influencers, while SoCap can only find 247 influencers.
Based on the precision function in Eq. (8) [16], the
precision of our CT-Influence method is 84%. In con-
trast, it is only 24.7% for SoCap method. Therefore,
comparing with SoCap, on average, our method greatly
improves the precision of social influence evaluation

by 240% in Epinions dataset. For DBLP, our CT-
Influence method finds 138 (precision is 13.8%) out
of the Ground Truth Top-1000 influencers, but SoCap
method only finds out 44 (precision is 4.4%). Therefore,
on average, our method improves the precision of social
influence evaluation by 210% in DBLP dataset.

Precision =
|Relevant

⋂
Retrieved|

|Retrieved|
(11)

• Next, we list the results of the Top-10 influencers
retrieved by each method against the Ground Truth
Top-10 influencers in Table III. From Table III, our
CT-Influence method can find all 10 influencers, and
the CT-Influence Ranking is very close to the Ground
Truth Ranking. But the influencers delivered by SoCap
is far away from the Ground Truth Ranking, and 5 out
of 10 influencers are missing in the Top-10 list.

• The experimental results of Epinions and DBLP are
plotted in Figure 5 and Figure 6, where we can see that
the number of the Ground Truth Top-1000 influencers
retrieved by our CT-Influence method is more than
SoCap’s with higher rankings (the small red circles of
our CT-Influence method are closer to the center of the
large circle). Therefore, our CT-Influence can deliver
more accurate social influence evaluation results than
SoCap.
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(a) AE(CT −
Influence, Epinions) = 171310
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(b) AE(SoCap,Epinions) =
5967223
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(c) AE(CT −
Influence,DBLP ) = 263866
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(d) AE(SoCap,DBLP ) =
51327091

Figure 7. The accuracy of the two methods on two datasets. X axis is the
serial number of influencers, Y axis is the ranking of social influence. Green
curve is Ground Truth Ranking, and small black circles are the rankings of
influencers delivered by each method.

• In addition, we use an Absolute Error (AE) function
to measure the error of each method. The error is the
absolute value between the influence ranking delivered
by each method and the Ground Truth Ranking. The
detailed calculation is as follows:

AE(method, dataset) =
∑

Pi∈GT

|RA(Pi)−GTRA(Pi)| (12)

where GT is the set of Ground Truth Top-1000 influ-
encers, RA(Pi) is the influence ranking of Pi evaluated
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(a) CT-Influence (LT model, Epin-
ions)
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(b) SoCap (LT model, Epinions)
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(c) CT-Influence (LT model, DBLP)
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(d) SoCap (LT model, DBLP)

Figure 8. The number of influenced nodes in Linear Threshold model

by each method, and GTRA(Pi) is the Ground Truth
Ranking of Pi. From Figure 7, AE(SoCap,Epinions)
is much greater than AE(CT−Influence,Epinions)
and AE(SoCap,DBLP ) is much greater than
AE(CT − Influence,DBLP ), so the error level of
SoCap is high.

• Finally, we study the accuracy and absolute error of our
CT-Influence method by comparing the Top-1000 influ-
encers identified by each method against the Ground
Truth Top-1000 influencers. Since SoCap ignore the
social relationship and preference similarity between
participants, it cannot deliver accurate social influence
evaluation results. Therefore, our CT-Influence method
outperforms SoCap in Effectiveness based on Ground
Truth results.
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(a) IC model, Epinions
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Figure 9. The number of influenced nodes in Independent Cascade model

2) Exp-2. Effectiveness (by Diffusion Models): Figure 8
depicts the experimental results of LT model, where we
can see that in all cases, the number of influenced nodes
identified by our CT-Influence with different K and θi are
more than that of SoCap. The average number of influenced
nodes identified by our CT-Influence is 5,609.18, while that
of SoCap is 1,371.02 which is 75.56% less than that of
CT-Influence. In addition, the number of influenced nodes

identified by the two methods increases with the increase of
K. This is because that with the increase of K, the number
of sources for the spread of information increases, which
leads to the Top-K influencers identified by both of CT-
Influence and SoCap can influence more nodes in LT model.
Furthermore, the number of influenced nodes identified by
the two methods decreases with the decrease of θi. This is
because that the limit for the spread of information decreases
with the decrease of θi, which leads to the Top-K influencers
identified by both of CT-Influence and SoCap can influence
more nodes in LT model. Therefore, based on the properties
of diffusion models [9], the experimental results illustrate
that the Top-K influencers identified by our CT-Influence
have more influences than that of SoCap in LT model.

Figure 9 depicts the number of influenced nodes identified
by our CT-Influence and SoCap, where we can see that with
the increase of K in IC model respectively, where we can see
that the number of influenced nodes of our CT-Influence are
more than that of SoCap in all 6 cases on the two datasets.
The average number of influenced nodes identified by our
CT-Influence is 24,441.92, and that of SoCap is 21,069.5
which is 13.8% less than the former. This is because that
based on the properties of the IC model introduced in
the Section Diffusion Models, with taking the three social
contexts into consideration, the Top-K influencers identified
by our CT-Influence have higher probability to influence
their neighbor nodes. In addition, with the increase of K, the
number of nodes influenced by the Top-K nodes identified
by both of the two methods increases.

From the experimental results in the two classical dif-
fusion models, i.e., LT model and IC model, we can see
that the Top-K influencers identified by our CT-Influence
have more influences than that of the state-of-the-art method,
SoCap. Based on the properties of diffusion models, on
average, our CT-Influence improves the effectiveness of
SoCap by 90%. Thus our CT-Influence method outperforms
SoCap in effectiveness based on the two classical diffusion
models.

3) Exp-3. Efficiency: Table II lists the corresponding
execution times of social influence evaluation (except the
time of “loading all data into memory”) of two methods.
On Epinions dataset, the average execution time is 444 ms
for our CT-Influence. By contrast, it is 6,436 ms for SoCap.
On average, our method can save 93.1% of the execution
time. On DBLP dataset, it is 1,244 ms for our CT-Influence
and 8,364 ms for SoCap. On average, our method can save
85.1% of the execution time. This is because that based
on Theorem 1, the convergence of our CT-Influence is fast.
Therefore, our CT-Influence method greatly outperforms
SoCap in efficiency.

VI. CONCLUSION

In this paper, we have proposed a Context-Aware Trust-
Oriented Influencers Finding (CT-Influence) method based



on the social trust, the social relationships and the preference
similarity between two participants to evaluate the social
influences. The experiments conducted on two real social
network datasets (Epinions and DBLP) have demonstrated
our CT-Influence method greatly outperforms the state-of-
the-art method, SoCap, and can deliver more accurate social
influence evaluation results with less execution time.
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